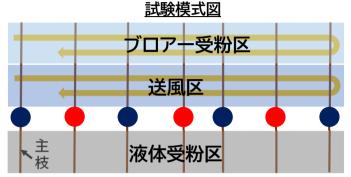
キウイフルーツにおける受粉作業の省力化

受粉樹の混植、ブロアーを用いた送風により、大規模に省力受粉が可能

試験区の構成

試験場所:果樹研究センター内キウイ圃場(雄樹混植園地)供試品種:ヘイワード(20年生、一文字整枝) 3樹反復


=₩EAGZ	受粉日						
試験区	5/20	5/21	5/22	5/23	5/24		
送風区	送風	送風	送風	送風	送風		
ブロアー受粉区	送風	送風	ブロアー受粉	送風	送風		
液体受粉区	液体受粉	液体受粉	_	液体受粉	液体受粉		

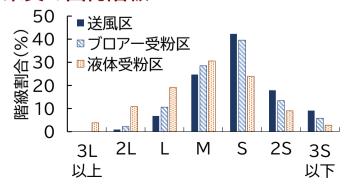
・送風およびブロアー受粉は、ブロアー受粉機(写真)を用いて実施。 (模式図内の矢印方向に進行、2往復。ブロアー受粉は、純花粉を使用。)

・液体受粉区は、液体増量剤(花みらい)で花粉を200倍希釈。

写真:ブロアー受粉機 (PollenBlower、PollenPlus)

マツア(受粉樹) ヘイワード(供試樹)

果実品質


	試験区	果実重	<u>果実の大きさ(mm)</u>			種子数	糖度	酸含量
		(g)	縦経	横長径	横短径	(個)	(°Brix)	(g/100ml)
	送風区	95.7	65.0	52.9	46.8	1245	13.5	0.37
	ブロアー受粉区	96.7	64.0	52.9	46.9	1224	13.2	0.48
	液体受粉区	101.2	64.2	55.2	47.5	1205	13.8	0.51
	有意差 ^{z)}	n.s	n.s	n.s	n.s	n.s	n.s	n.s
	\ . I A -L . I		/					\ _

 z^{2} t検定によりn.sは有意差なし(果実重、果実の大きさn=60、種子数n=15、糖度、酸含量n=30)

10aあたり受粉作業時間、花粉消費量、結実率

試験区	受粉作業時間	花粉消費量 (g)	結実率 (%)
送風区	2時間35分	0	94.9
ブロアー受粉区	2時間35分	144	93.9
液体受粉区	15時間35分	117	92.2

果実の出荷階級

- ○受粉樹の混植とブロアー受粉機により<mark>受粉作業時間が約8割削減</mark>。
- 〇送風区、ブロアー受粉送風区ともに**小玉傾向**であったが、<mark>開花盛期の</mark> <u>ブロアー受粉</u>により少し改善された。

<u>送風区</u>: 花粉消費がなく理想的であるが、一部に受粉ムラで小玉が発生。 →早期摘果など果実肥大を促す栽培管理を検討。

<u>ブロアー受粉区</u>: 受粉回数を増やせば、小玉傾向の改善につながると考えられるが、花粉消費量が増加する。

→効率的な花粉採取方法を検討。雌樹単独園での利用も検討。