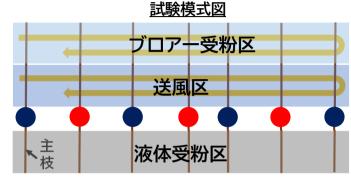
キウイフルーツにおける受粉作業の省力化

受粉樹の混植、ブロアーを用いた送風により、大規模に省力受粉が可能

試験区の構成

試験場所:果樹研究センター内キウイ圃場(雄樹混植園地)供試品種:ヘイワード(20年生、一文字整枝) 3樹反復

≘-⊁E-A GZ			受粉日		
試験区	5/20	5/21	5/22	5/23	5/24
送風区	送風	送風	送風	送風	送風
ブロアー受粉区	送風	送風	ブロアー受粉	送風	送風
液体受粉区	液体受粉	液体受粉	_	液体受粉	液体受粉


・送風およびブロアー受粉は、ブロアー受粉機(写真)を用いて実施。

(模式図内の矢印方向に進行、2往復。ブロアー受粉は、純花粉を使用。)

・液体受粉区は、液体増量剤(花みらい)で花粉を200倍希釈。

写真:ブロアー受粉機 (PollenBlower、PollenPlus)

マツア(受粉樹) ヘイワード(供試樹)

果実品質

試験区		果実重	果実	の大きさ	(mm)	種子数	糖度	酸含量
11. 15. 15. 15. 15. 15. 15. 15. 15. 15.	(g)	縦経	横長径	横短径	(個)	(°Brix)	(g/100ml)	
	送風区	95.7	65.0	52.9	46.8	1245	13.5	0.37
	ブロアー受粉区	96.7	64.0	52.9	46.9	1224	13.2	0.48
	液体受粉区	101.2	64.2	55.2	47.5	1205	13.8	0.51
	有意差 ^{z)}	n.s	n.s	n.s	n.s	n.s	n.s	n.s
	\ . I A -L . I		/	,				^ `

 z^{2} t検定によりn.sは有意差なし(果実重、果実の大きさn=60、種子数n=15、糖度、酸含量n=30)

10aあたり受粉作業時間、花粉消費量、結実率

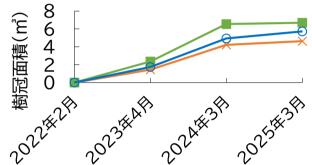
試験区	受粉作業時間	花粉消費量 (g)	結実率 (%)
送風区	2時間35分	0	94.9
ブロアー受粉区	2時間35分	144	93.9
液体受粉区	15時間35分	117	92.2

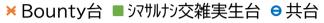
果実の出荷階級

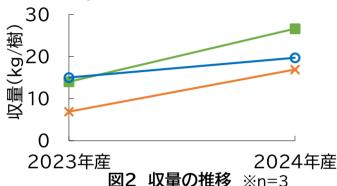
- ○受粉樹の混植とブロアー受粉機により<mark>受粉作業時間が約8割削減</mark>。
- 〇送風区、ブロアー受粉送風区ともに**小玉傾向**であったが、<mark>開花盛期の</mark> <u>ブロアー受粉</u>により少し改善された。

<u>送風区</u>: 花粉消費がなく理想的であるが、一部に受粉ムラで小玉が発生。 →早期摘果など果実肥大を促す栽培管理を検討。

<u>ブロアー受粉区</u>: 受粉回数を増やせば、小玉傾向の改善につながると考えられるが、花粉消費量が増加する。


→効率的な花粉採取方法を検討。雌樹単独園での利用も検討。


耐水性台木「Bounty」台'ヘイワード'の特性


湿害に強い「Bounty」を 'ヘイワード' の台木として利用

2019年に台木を定植し、2020年4月に 'ヘイワード' を接木。 実施場所:果樹研究センター内キウイほ場(花崗岩母材,中粗粒褐色森林土)

Bounty台 ■ シマサルナシ交雑実生台 ⊖ 共台

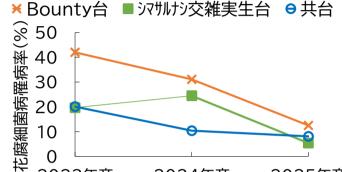


図3 花腐細菌病罹病率の推移 %n=3

2024年産

樹冠面積の推移

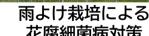

※Bounty台n=3、シマサルナシ交雑実生台n=4、慣行台n=9

表1 追熟果の果実品質(2024年10月24日収穫)

処理区	果実重	果実の大きさ(mm)			果肉硬度	糖度	酸含量
处理区	(g)	縦径	横長径	横短径	(kg)	(°Brix)	(g/100ml)
Bounty台	113.7	67.6	56.1	47.0	1.99	13.7	0.29
シマサルナシ交雑実生台	102.8	64.2	54.8	46.1	2.23	14.5	0.59
共台	112.6	67.1	55.6	47.7	1.85	14.1	0.40
<u></u> %n=3							

健全花

2023年産

花腐細菌病罹病花

花腐細菌病対策

2025年産

Bounty台へイワードは、初期生育の遅れや花腐細菌病の助長などが問題。

- ○初期生育の改善→大苗育苗を検討。
- ○花腐細菌病対策➡雨よけ栽培や主幹への環状はく皮を検討。
- 水田転換園など<u>湿害により他の台木では健全に育たない場合に有効</u>であ ると考えており、水田転換園での生育調査も実施している。

【参考】水田転換園での定植1年目の状況 (2021年12日)

(2021-12/3)						
台木の種類	主枝 (cm)	枯死 (%)				
Bounty台	189	0				
シマサルナシ交雑実生台	129	60.0				
共台	146	81.8				

除菌済みキウイフルーツ花粉で生産した 'ヘイワード' の果実品質

液体増量剤に除菌剤を加え、花粉のかいよう病菌を除菌

除菌処理方法

- ①容器に少量の受粉用液体増量剤を入れる。
- ②花粉を入れダマがなくなるまで振り混ぜる。
- ③残りの増量剤を加える。
- ④全体が均一になじむように5分間振とう。
- ⑤除菌剤(液剤)を一気に全部入れる。
- ⑥続けてすぐに除菌剤(粉剤)を一気に全部入れる。
- ⑦30秒間激しく振り混ぜて除菌完了。
- ➡除菌処理後30分以内に受粉を終える。

表1 除菌処理経過時間後の花粉発芽率 (単位:%)

試験区	0h	0.5h	1h	2h	3h
除菌区	67.9	60.9	59.7	55.8	51.9
無処理区	76.1	69.3	68.6	66.3	57.0

※センター産チーフタンを使用(花粉発芽率82.7%)

'ヘイワード' における受粉試験(2024年)

- ○松山市粟井の現地ほ場にて試験を実施。
- 〇無処理区は液剤増増量剤(花みらい)を利用し、花粉の希釈倍率は除菌区、無処理区ともに200倍。

表2 結実率、種子数、1果重および果実の大きさ

試験区	結実率	種子数	1果重	果実	の大きさ	(mm)
11. 高央 2	(%)	(個)	(g)	縦径	横長径	横短径
除菌区	94.4	960	105.2	64.0	54.6	49.6
無処理区	96.3	1188	113.3	65.6	56.7	49.5

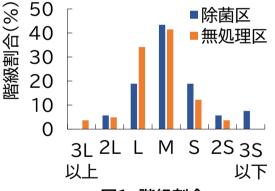


図1 階級割合 除菌区で小玉果が発生

図2 除菌区の収穫果果形はほぼ問題なし

- 〇除菌処理により花粉発芽率が低下しやすくなるため、**除菌資材混和後30分以内**で使い切る。
- ○受粉不良果(極小果)の発生が懸念されるため、通常より<u>多めに花蕾を残す</u>。
- ○種子数の減少や小玉傾向にあったため、

 <b

カキ新品種 'つきまる' の特性

10月下旬に収穫可能な大果で良食味な完全甘ガキ

交配親 太月×甘秋

育成者 (国研)農研機構

登録日 2025年6月26日

甘渋性 完全甘ガキ

収穫期 10月下旬~11月上旬

果実品質(2019~2023年)

品種名	収穫盛期	果実重 果皮色 (g) (果頂部)		Brix (%)	果肉硬度 (kg)	
つきまる	10月28日	470	4.9	15.4	1.4	
富有	11月11日	300	5.6	14.5	2.0	

収穫期のつきまる

- ○収穫期は10月下旬~11月上旬と富有よりやや早い。
- ○果実重が<u>400~600gの大果</u>系品種である。
- 〇肉質は"密"で、果肉硬度が低く、果汁は多く、<u>食味良好</u>である。
- 〇果頂裂果はほとんどないが、へたすきが生じやすい。や や**条紋が発生するが軽微**である。
- ○雌花の着生は多く、雄花の着生はみられない。
- 〇ヘタ周辺に着色ムラが生じるが、摘葉すると改善される。
- 〇早期落果、後期落果がみられること、樹勢が衰弱しやすいことが普及上の注意点である。
- ※農研機構より穂木の提供を受け調査を実施。

ブドウ新品種 'サニーハート' の特性

皮ごと食べられるハート形の赤色品種

交配親 626-84

×シャインマスカット

育成者 (国研)農研機構

登録年 2025年3月12日

収穫期 8月下旬~9月上旬

収穫期の'サニーハート'

収穫期(8月下旬)の果実品質(2021~2023年の平均値)

品種名	房重 (g)	一粒重 (g)	糖度 (°Brix)	酸含量 (g/100ml)	皮ごと 食べやすさ
サニーハート	436	10.8	18.4	0.42	可能
安芸クイーン	507	15.2	19.5	0.44	困難
巨峰	381	11.3	17.2	0.56	困難

※安芸クイーン、巨峰は着色不良のため、慣行(8月中旬)より遅く収穫(8月30日頃)

- 〇伊台での開花盛期は5月23日頃で、花房にジベレリン 処理をすることで、種なし果の生産も可能。
- ○収穫期は8月下旬から9月上旬頃で '安芸クイーン' や '巨峰' より遅く、'シャインマスカット' より早い。
- ○果皮が赤色で、ハート形を連想させる特徴的な果形。
- ○果皮や果肉に渋味がなく、皮ごと食べられる。
- ○花振るいが少なく、摘粒に労力を要する。
- ※農研機構より穂木の提供を受け調査を実施。

ナシ新品種 '蒼月' の特性

7月下旬に出荷可能な良食味の青ナシ

交配親 なつしずく×はつまる

育成者 (国研)農研機構

登録日 2025年3月12日

収穫期 7月下旬~8月上旬

果実品質(2020~2022年)

品種名	収穫始期 (月/日)	果実重 (g)	Brix (%)	рН	果皮色	果形
蒼月	7/26	370	12.5	5.1	黄緑色	円
なつしずく	8/4	371	12.0	5.0	黄緑色	円
幸水	8/6	398	12.4	5.1	淡緑褐色	扁円

収穫期の蒼月

- ○7月下旬に成熟する極早生品種の青ナシ。
- ○果実重は幸水と同程度で、肉質は軟らかく食味良好。
- ○みつ症が年によってわずかに発生するが、症状は軽い。
- ○心腐れは発生しない。
- ○黒斑病には抵抗性で、黒星病には罹病性。
- ○暖冬時に**発芽不良**が幸水と同程度見られる。 (2020年に果樹研究センターほ場にて発生)
- ○短果枝の着生、えき花芽の着生が少ない。

※農研機構より穂木の提供を受け調査を実施。