愛媛県における酸性雨調査結果について（平成2～13年度）

津野田隆敏

The Monitoring Results of Acid Deposition in Ehime Prefecture
(FY 1990 ~ FY 2001)

Takatoshi TSUNODA

In Ehime Prefecture, acid deposition monitoring by the filtrating bulk sampler method is conducted from fiscal 1990 (the Heisei 2 fiscal year) in Matsuyama City, Niihama City and Yawatahama City. Since more than ten years have already passed after starting monitoring, it analyzed as to transition and seasonal variation of concentration and deposition amounts of major constituents in precipitation, from April 1990 to March 2002 in Matsuyama City, from April 1991 to March 2002 in Niihama City and Yawatahama City. Furthermore, it analyzed also as to transition and seasonal variation about deposition amounts of major constituents in filter paper surface residual substances.

Consequently, the pH values of precipitation in Matsuyama City, Niihama City and Yawatahama City ranged over 3.8 to 6.8, 5.5 to 7.1 and 3.8 to 6.9, respectively. The average values of pH weighted by precipitation amounts in the monitoring period were 4.6, 4.6, and 4.8, respectively. Annual mean H⁺ concentration in precipitation of Matsuyama City and Niihama City on the monitoring period showed the decrease tendency, Niihama City in fiscal 2000, and Yawatahama City in fiscal 1991 and fiscal 1992 showed the high value as to concentrations and deposition amounts of SO₄²⁻, nss-SO₄²⁻, Cl⁻, NH₄⁺, etc. About the ratio of NO₃⁻ to nss-SO₄²⁻, concentration ratio and deposition amounts ratio showed the increase tendency at all points, NH₄⁺ concentration and NH₄⁺ deposition amounts showed the increase tendency since fiscal 1995 at all points. Depositon amounts of nss-Ca²⁺, Ca, Fe, Al and Mn showed the tendency which becomes high in spring at all points. It was presumed that Kosa (Asian soil dusts) has contributed as one of the causes, from monthly variations in observation days of Kosa by the Matsuyama Local Meteorological Observatory.

Keywords: acid rain, sulfate, nitrate, NO₃⁻/non-sea-salt SO₄²⁻ ratio, Kosa
調査の方法
1. 試料採取方法
試料は、孔径0.8μm、直径47mmのメンプランフィルター（Nuclepore ボリカーポネート）を取り付けた柴田科学㈱製W－102型過濾式採取装置を用い、週単位で濾液と濾紙上残留物に分けた採取した。
2. 調査地点、調査期間
調査地点は、松山市、新居浜市及び八幡浜市の3地点で、図1に示すとおりである。
なお、新居浜市及び八幡浜市については、新居浜保健所及び八幡浜中央保健所で採取しているが、沖合の老朽化に伴って、平成4年6月に新居浜市八雲町から本郷へ、平成9年7月に八幡浜市松栄から北浜へそれぞれ新築移転しており、その後に試料採取装置を移設している。
各調査地点の緯度、経度、海からの直線距離及び調査期間は、表1のとおりである。調査は平成2年度から実施したが、同年4月から実施したのは松山市のみで、新居浜市と八幡浜市については同年5月から調査を行った。
降水主要成分の年間沈着量の算定にあたっては、1年間の調査結果を必要とするため、新居浜市と八幡浜市については平成2年5月から翌年3月における調査結果を棄却し、平成3年4月の調査結果から解釈を行った。
3. 調査項目及び分析方法
調査は、過濾式採取装置で捕集した濾液と濾紙上残留物について行った。
調査項目は、濾液については、降水量、pH、電気伝導率（EC）、硫黄イオン（SO₄²⁻）、硝酸イオン（NO₃⁻）、塩化物イオン（Cl⁻）、アンモニウムイオン（NH₄⁺）、カルシウムイオン（Ca²⁺）、マグネシウムイオン（Mg²⁺）、カリウムイオン（K⁺）、及びナトリウムイオン（Na⁺）であり、濾紙上残留物については、カルシウム（Ca）、マグネシウム（Mg）、カリウム（K）、ナトリウム（Na）、鉄（Fe）、アルミニウム（Al）及びマンガン（Mn）である。
分析方法については、表2のとおりである。
なお、濾紙上残留物は、酸性雨調査マニュアルに従って濃縮硝酸及び過酸化水素による加熱分解処理を行った。

結果と考察
1. 降水量
各地点の調査期間における降水量の経年変化を図2に示す。各地点とも、梅雨期にあたる6月及び7月と、台風や雨季にあたる9月に降水量が多く、11月から2月

図1 愛媛県における酸性雨調査地点

表1 調査地点及び調査期間

<table>
<thead>
<tr>
<th>調査地点</th>
<th>松山市</th>
<th>新居浜市</th>
<th>八幡浜市</th>
</tr>
</thead>
<tbody>
<tr>
<td>採取場所</td>
<td>愛媛県立衛生環境研究所 (旧新居)</td>
<td>(新新居)</td>
<td>(旧新居)</td>
</tr>
<tr>
<td>緯度 (北緯)</td>
<td>33度50分</td>
<td>33度56分</td>
<td>33度56分</td>
</tr>
<tr>
<td>経度 (東経)</td>
<td>132度45分</td>
<td>133度17分</td>
<td>133度16分</td>
</tr>
<tr>
<td>海からの直線距離 (km)</td>
<td>5.5</td>
<td>1.6</td>
<td>3.3</td>
</tr>
<tr>
<td>調査期間</td>
<td>平成2年4月～14年3月</td>
<td>平成2年5月～14年3月</td>
<td>平成2年5月～14年3月</td>
</tr>
</tbody>
</table>

表2 分析方法

<table>
<thead>
<tr>
<th>調査項目</th>
<th>分析方法</th>
</tr>
</thead>
</table>
| 降水量 | 蒸発量を蒸発皿で測る。
| pH | ガラス電極法。 |
| 電気伝導率（EC） | 電気伝導率計。 |
| 硫酸イオン（SO₄²⁻）| イオンクロマトグラフ法。 |
| 塩化物イオン（Cl⁻）| アンモニウムイオン（NH₄⁺）。 |
| アンモニウムイオン（NH₄⁺）| 吸光光度法（インドフェノール法）。
| カルシウムイオン（Ca²⁺）| 吸光光度法。 |
| マグネシウムイオン（Mg²⁺）| 吸光光度法。 |
| ナトリウムイオン（Na⁺）| 吸光光度法 (Fe)。 |
| アルミニウム（Al） | アルミニウム (Al)。 |
| マンガン（Mn） | |
表3 平成3年度から13年度における年平均降水量

<table>
<thead>
<tr>
<th>調査地点</th>
<th>年平均降水量 (mm)</th>
<th>(参考)1778年降水量 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>松山市</td>
<td>1305.1</td>
<td>1338.4</td>
</tr>
<tr>
<td>新居浜市</td>
<td>1394.7</td>
<td>1258.7</td>
</tr>
<tr>
<td>八幡浜市</td>
<td>1639.3</td>
<td>1509.2</td>
</tr>
</tbody>
</table>

観測結果に大きな差はみられなかった。

各地点の降水量の経年変化を図3に示す。3地点とも、平均5年度で最も降水量が多く、調査期間中の平均値（以下、「平均値」と略す。）に比べ、1.6 ～ 2.5倍の降水量であった。平均6年度の降水量は、前年度とは逆に大きく減少した。平均3年度からの5年度における八幡浜市の降水量は、他の2地点より400mm/年以上多かった。

表3に、平成3年度から13年度における年平均降水量を気象庁の地域気象観測システム（AMeDAS: Automated Meteorological Data Acquisition System，以下「アメダス」と略す。）による降水量観測結果とともに示す。八幡浜市は、他の2地点より降水量が多いが、松山市と新居浜市には大きな差はみられなかった。また、年平均降水量については、酸性雨調査地点とアメダスの観測結果に大きな差はみられなかった。

2. 電気伝導率

各地点の降水における ECの経年変化を図4に、ECの経年変化を図5に示す。各地点とも、降水値の少ない冬季に高くなる傾向が見られた。ECの年平均値は、降水量が多かった平成5年度及び11年度に20μS/cm未満の低い値を示していた。また、松山市と八幡浜市は平均4年度が最も高く、新居浜市が平均13年度が最も高い値を示していた。ECの推移については、各地点とも統計的に有意な(p < 0.05)増減の傾向がみられなかった。

3. pH

各地点におけるpHの年平均値と、降水量で重み付けした調査期間におけるpHの平均値を表4に示す。調査期間の降水のpHは、松山市が3.8 ～ 6.8、新居浜市が3.5 ～ 7.1、八幡浜市が3.8 ～ 6.9の範囲にあり、調査期間におけるpHの加算平均値は、松山市と新居浜市が4.8、八幡浜市が4.8であった。

表4 pH年平均値及び調査期間におけるpH加算平均値

<table>
<thead>
<tr>
<th>年度</th>
<th>松山市</th>
<th>新居浜市</th>
<th>八幡浜市</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.4(3.9 ～ 5.6)</td>
<td>4.4(4.0 ～ 5.8)</td>
<td>4.7(4.1 ～ 6.7)</td>
</tr>
<tr>
<td>3</td>
<td>4.3(3.8 ～ 5.7)</td>
<td>4.4(4.0 ～ 5.8)</td>
<td>4.7(4.0 ～ 6.5)</td>
</tr>
<tr>
<td>4</td>
<td>4.4(3.9 ～ 6.3)</td>
<td>4.5(3.5 ～ 5.7)</td>
<td>4.7(4.0 ～ 6.5)</td>
</tr>
<tr>
<td>5</td>
<td>4.7(4.1 ～ 6.8)</td>
<td>4.6(3.9 ～ 6.0)</td>
<td>4.9(4.2 ～ 6.1)</td>
</tr>
<tr>
<td>6</td>
<td>4.8(4.2 ～ 6.5)</td>
<td>4.6(3.9 ～ 6.0)</td>
<td>5.1(4.9 ～ 5.8)</td>
</tr>
<tr>
<td>7</td>
<td>4.5(4.0 ～ 5.9)</td>
<td>4.5(3.8 ～ 5.1)</td>
<td>4.5(3.9 ～ 5.8)</td>
</tr>
<tr>
<td>8</td>
<td>4.5(3.9 ～ 5.6)</td>
<td>4.4(3.8 ～ 5.6)</td>
<td>4.7(4.3 ～ 5.7)</td>
</tr>
<tr>
<td>9</td>
<td>4.7(4.0 ～ 6.3)</td>
<td>4.6(4.1 ～ 5.5)</td>
<td>4.9(4.3 ～ 6.6)</td>
</tr>
<tr>
<td>10</td>
<td>4.8(3.9 ～ 6.5)</td>
<td>4.7(4.0 ～ 6.7)</td>
<td>5.0(3.8 ～ 6.7)</td>
</tr>
<tr>
<td>11</td>
<td>4.8(4.0 ～ 6.7)</td>
<td>4.7(4.0 ～ 6.7)</td>
<td>5.0(4.0 ～ 6.8)</td>
</tr>
<tr>
<td>12</td>
<td>5.0(4.2 ～ 6.7)</td>
<td>4.9(4.0 ～ 7.1)</td>
<td>5.0(4.1 ～ 6.9)</td>
</tr>
<tr>
<td>13</td>
<td>4.8(4.1 ～ 6.5)</td>
<td>4.8(4.1 ～ 6.5)</td>
<td>4.9(3.9 ～ 6.8)</td>
</tr>
</tbody>
</table>

加算平均値：4.6 ～ 4.8

備考：括弧内の数値は、最小値及び最大値である。

調査期間におけるpHをモル濃度に換算し、降水量で加算平均したH⁺濃度の経年変化を図6に示す。松山市と新居浜市は3月に最も高い濃度を示した。八幡浜市は、降水値の少ない12月と1月に濃度が高かった。また、八幡浜市のH⁺濃度は、冬季を除いて3地点の中で最も濃度が低かった。

図6 H⁺濃度の経年変化
新居浜市が6月、八幡浜市が7月であった。冬季のSO₄²⁻-沈着量は地点間で異なりおり、八幡浜市における12月と1月のSO₄²⁻-沈着量は、松山市及び新居浜市に比べ、1.6～1.7倍多かった。

SO₄²⁻濃度及びSO₂⁻-沈着量の経年変化を図9に示す。SO₄²⁻-年間沈着量の調査期間における平均値は、松山市では37.6mmol/m²、新居浜市では40.7mmol/m²、八幡浜市では42.5mmol/m²であり、地点間には大きな差はみられなかった。

SO₄²⁻濃度は、降水量が最大多かった平成5年年度で高く、年降水量が最も少ない平成6年度（新居浜市は平成13年度）に高い値を示した。新居浜市におけるSO₄²⁻濃度及び沈着量は、平成12年度に最高値（平年値の約1.5倍）を示していたが、これは平年値の約1.4倍のSO₄²⁻濃度が寄与したものである。新居浜市の平成3年度及び4年度のSO₂⁻-沈着量は、平年値の約1.8倍高い値であったが、これは平年値の約1.6倍のSO₄²⁻濃度と、平年値の約1.2倍の年間降水量に起因している。

降水中的Na⁺がすべて海塩に由来すると仮定し、海水組成比から算出した3)の非海塩由来の硫酸イオン（non sea salt：nss-SO₄²⁻）濃度とnss-SO₂⁻-沈着量の経年変化を図10に示す。SO₂⁻-沈着量に対するnss-SO₂⁻-沈着量の割合の調査期間における平均値は、松山市が95.2%、新居浜市が95.6%、八幡浜市が88.0%であり、nss-SO₂⁻-沈着量がSO₂⁻-沈着量のほとんどを占めていた。SO₄²⁻-濃度とSO₂⁻-沈着量の経年変化に関してみられた特徴は、図10に示したnss-SO₄²⁻濃度とnss-SO₂⁻-沈着量とも同様であった。新居浜市の平成12年度、及び八幡浜市の平成3年度及び4年度におけるnss-SO₂⁻-沈着量のSO₄²⁻-沈着量に対する割合は、それぞれ約96%、約87%、約85%であり、人為的発生源4)や火山由来5)の

图7 H⁺濃度の経年変化

图8 SO₄²⁻-濃度及び沈着量の経年変化

图9 SO₂⁻-濃度及び沈着量の経年変化

- -
影響が推察された。

なお，SO₄²⁻濃度，NO₃⁻沈着量，nss – SO₄²⁻濃度及びnss – SO₄²⁻沈着量における年平均値の推移については，有意な（p < 0.05）増減傾向はみられなかった。

5. 硝酸イオン

NO₃⁻濃度及びNO₃⁻沈着量の経年変化を図11に示す。NO₃⁻濃度については，降水量の少ない12月から2月にかけて高濃度，降水量の多い6月から9月にかけて低濃度な傾向がみられた。NO₃⁻沈着量については，松山市及び新居浜市では梅雨期にあたる6月の沈着量が多く，八幡浜市では12月の沈着量が最も多く，また，2月から10月におけるNO₃⁻沈着量は，新居浜市が3地点の中で最も多くかった。

NO₃⁻濃度及びNO₃⁻沈着量の経年変化を図12に示す。NO₃⁻年間沈着量の観測期間における平均値は，松山市では31.4mmol/m²，新居浜市では47.2mmol/m²，八幡浜市では37.0mmol/m²であり，新居浜市のNO₃⁻沈着量が最も多くかった。

松山市におけるNO₃⁻の年間沈着量は20～40mmol/m²の範囲にあり，他の2地点ほど大きな変動を示されなかった。新居浜市のNO₃⁻沈着量は，平成11年度及び12年度に多かった。平成11年度にNO₃⁻沈着量が多かったのは，降水量が平成5年度に比べて多かったことに起因しているもので，NO₃⁻濃度は半分並みであった。一方，平成12年度については，降水量が半分並みであったが，NO₃⁻濃度及びNO₃⁻沈着量は最高値（年間値のそれぞれ約1.6倍，約1.8倍）を示しており，また，SO₄²⁻と同様に，3地点の中で最も高い値であった。なお，平成13年度の新居浜市におけるNO₃⁻濃度が観測期間の中で最も高かったのは，降水量が少なかったことによるもので，NO₃⁻沈着量は半分並みであった。八幡浜市のNO₃⁻沈着量は平成4年度が最も多く，半分の約1.8倍であった。これは，この年のSO₄²⁻沈着量が同様にNO₃⁻濃度及び降水量の両方が半分値より高い値（半分値のそれぞれ約1.5倍，約1.2倍）であったことに起因している。また，八幡浜市では，平成3年度におけるNO₃⁻濃度，降水量及びNO₃⁻沈着量が，半分のそれぞれ約1.2倍，約1.2倍，約1.4倍高い値を示していた。

なお，NO₃⁻濃度及びNO₃⁻沈着量の年の平均値の推移については，有意な（p < 0.05）増減傾向はみられなかった。

6. 非海塩由来硫酸イオンと硝酸イオンの比較

nss – SO₄²⁻濃度に対するNO₃⁻濃度（もちろん当量濃度）
図13 NO₃⁻/nss-SO₄²⁻当量濃度比の経年変化

の割合の経年変化を図13に示す。NO₃⁻/nss-SO₄²⁻比は、3地点とも有意な（松山市：p < 0.05、新居浜市及び八幡浜市：p < 0.01）減少傾向を示していた。また、3地点の中では新居浜市が最も高い増加傾向を示していった。

nss-SO₄²⁻沈着量に対するNO₃⁻沈着量（モル沈着量）の割合の経年変化を図14に示す。沈着量におけるNO₃⁻/nss-SO₄²⁻比、3地点とも有意な（松山市：p < 0.05、新居浜市及び八幡浜市：p < 0.01）増加傾向を示していた。また、新居浜市は濃度比と同様に最も高い増加傾向を示していた。新居浜市が最も増加傾向を示しているのは、新居浜市及びその周辺地域において固定発生源等から排出される塩素酸化物の排出量が他の地域より多いことによる起因しているのではないかと推察される。また、3地点でNO₃⁻/nss-SO₄²⁻比が増加傾向を示しているが、その原因としては、地域的な発生源による影響と、越境汚染を含めた広域的な大気汚染に対する影響が推察される。

松山市及び新居浜市内の大气汚染常時監視システムによる地表付近の大気中二酸化硫黄及び塩素酸化物濃度の年平均値の経年変化を図15及び図16に示す。地表付近の大気中二酸化硫黄及び塩素酸化物濃度のデータからは、降水のようなN/S (NO₃⁻/SO₄²⁻)比増加の傾向は明らかにならなかった。これは、酸性雨採取地点と大気汚染汚染常時監視測定局では設置場所が異なること、降水

図14 NO₃⁻/nss-SO₄²⁻沈着量比の経年変化

図15 地上付近の大気中二酸化硫黄濃度の経年変化
7. 酸化物イオン

Cl⁻濃度とCl⁻沈着量の経年変化を図17に示す。Cl⁻濃度は、11月から2月にかけて濃度が高い傾向がみられた。この時期は北西季節風による影響と、降水量が少ないと影響しているものと思われる。Cl⁻沈着量も1月を頂点とした冬期に多い傾向であった。

Cl⁻濃度とCl⁻沈着量の経年変化を図18に示す。Cl⁻年間蒸着量の調査期間における平均値は、松山市では46.7 mmol/m²、新居浜市では45.7 mmol/m²、八幡浜市では110.8 mmol/m²であり、八幡浜市のCl⁻沈着量は、松山市や新居浜市に比べ2倍以上の値であった。八幡浜市の

平成3年度及び4年度におけるCl⁻沈着量は、200 mmol/m²を超える高い値を示しており、年間値よりそれぞれ約2.0 倍、約2.2倍多かった。また、Cl⁻濃度も平均値のそれぞれ約1.5倍、約1.9倍高い値であった。

なお、各地点ともCl⁻濃度及びCl⁻沈着量のいずれにおいても有意な(p < 0.05)増減傾向はみられなかった。8. アンモニアイオン

NH₄⁺濃度及びNH₄⁺沈着量の経年変化を図19に示す。NH₄⁺濃度については、降水量の少ない冬季に高濃度な、降水量の多い6月から9月に低濃度な傾向がみられた。
新居浜市におけるNH₄⁺濃度は、7月と10月を除き、3地点の中で最も多く、NH₄⁺沈着量は、6月と3月に多く、また、7月と12月以外は新居浜市のNH₄⁺沈着量が3地点の中で最も多かった。

NH₄⁺濃度及びNH₄⁺沈着量の経年変化を図20に示す。
調査期間におけるNH₄⁺年間沈着量の平均値は、松山市では45.0mmol/㎥、新居浜市では71.9mmol/㎥、八幡浜市では52.0mmol/㎥であり、新居浜市のNH₄⁺沈着量が最も多かった。

松山市は、平成7年度以降、NH₄⁺沈着量、NH₄⁺濃度ともに有意な（p < 0.01）増加傾向がみられた。新居浜市は、NH₄⁺沈着量は、NO₃⁻沈着量と同様に、平成11年度及び12年度に多かった。平成11年度におけるNH₄⁺沈着量、NH₄⁺濃度が年間並みであるにもかかわらず、降水水量の増多が寄与して高い値を示した。平成12年度におけるNH₄⁺沈着量は年間並の約2.2倍高い値であったが、これはSO₄²⁻及びNO₃⁻と同様に、高いNH₄⁺濃度（年間並の約2倍）に起因している。平成13年度におけるNH₄⁺濃度は、調査期間の中で最も高濃度であったが、降水水量が少なかったため年間並のNH₄⁺沈着量であった。また、平成7年度以降、NH₄⁺沈着量及びNH₄⁺濃度とも有意な变化（p < 0.05）増加傾向がみられた。八幡浜市は、平成3年度及び4年度におけるNH₄⁺濃度、NH₄⁺沈着量が年間並の約2倍であった。また、他の地点同様、平成7年度以降、NH₄⁺沈着量、NH₄⁺濃度とも有意な増加傾向がみられた。

9. カルシウムイオン

Ca、Mg、K、Naの4項目については、濾過式採取装置で採取した濾液中の濃度と経年変化における濃度を測定している。本装置が常時開放型であることを考慮して、濾液の測定値から得られた水溶性Caの沈着量と濾紙上残物の測定値から得られた不溶性Caの沈着量を合算して、経年変化及び経年変化を解析した結果を図21及び図22に示す。水溶性成分及び不溶性成分を合算したCa年間沈着量の調査期間における平均値は、
松山市では16.7mmol/m³、新居浜市では13.8mmol/m³、八幡浜市では18.3mmol/m³であり、新居浜市のCa沈着量が最も少なかった。

松山市と新居浜市は、2月から5月にかけて月間1.5mmol/m³以上のCa沈着量を示した。八幡浜市は12月から5月にかけてCa沈着量が多かった。Ca年間沈着量についても、松山市及び八幡浜市が10〜25mmol/m³の範囲に、新居浜市は平均12年度を除き5〜15mmol/m³の範囲にあったが、新居浜市の平成12年度におけるCa沈着量は、半年値の約2.3倍であった。この年は、松山市におけるCa沈着量も半年値の約1.4倍あり、両地点とも調査期間における最高値を示していた。

降水中の非海塩由来カルシウムイオン（nss-Ca^{2+}）濃度とnss-Ca^{2+}沈着量の経時変化を図23に示す。nss-Ca^{2+}濃度は降水量の少ない冬季に高く、nss-Ca^{2+}沈着量は3月から5月の春季に多い傾向を示した。

水溶性Ca^{2+}沈着量に対する水溶性nss-Ca^{2+}沈着量の割合の調査期間における平均値は、松山市が95.9%、新居浜市が95.3%、八幡浜市が88.7%であり、nss-SO_{4}^{2-}と同様に、nss-Ca^{2+}沈着量がほとんどを占めていた。nss-Ca^{2+}濃度とnss-Ca^{2+}沈着量の経年変化を図24に示す。松山市と八幡浜市の濃度は、調査期間で最も降水量が少なかった平成6年度に最も高かったが、nss-Ca^{2+}沈着量は半値以下であった。新居浜市は、nss-Ca^{2+}濃度及びnss-Ca^{2+}沈着量とも平成12年度で最も高い値を示し、半値のそれぞれ約2.2倍、約2.4倍であった。この年は、松山市もnss-Ca^{2+}沈着量が最も多く、nss-Ca^{2+}濃度及び沈着量は半年値の約1.7倍及び約1.5倍であった。

10. マグネシウムイオン

水溶性Mg^{2+}の沈着量と緑藻上残留物の測定結果から得られた不溶性Mg沈着量を合わせて、経年変化及び経年変化を解析した結果を図25及び図26に示す。水溶性Mg成分及び不溶性Mg成分を合算したMg年間沈着量の調査期間における平均値は、松山市では7.8mmol/m³、新居浜市では7.9mmol/m³、八幡浜市では14.5mmol/m³であり、八幡浜市のMg沈着量は他の地点の約2倍であった。
新居浜市は春季のMg沈着量が最も多く、松山市では冬季から春季にかけてMg沈着量が多かった。八幡浜市は冬季のMg沈着量が最も多く、8月と9月のMg沈着量も多かった。Mgの年間沈着量については、松山市では平成2年度におけるMg沈着量が平年値の約1.6倍であり、新居浜市は平成12年度におけるMg沈着量が平年値の約2.1倍であった。八幡浜市は、平成6年度におけるMg沈着量が調査期間中において最も少なく、平年値の約3割であった。また、平成3年8月及び4年1月におけるMg沈着量は、平年値のそれぞれ約1.6、約1.8倍であった。

11. カリウムイオン
水溶性K⁺の沈着量とフィルター上残留物の測定結果から得られた不溶性K沈着量を合計して、経月変化及び経年変化をとりまとめた結果を図27及び図28に示す。水溶性成分及び不溶性成分を合算したK年間沈着量の調査期間における平均値は、松山市では3.6nmol/m²、新居浜市では4.6nmol/m²、八幡浜市では7.2nmol/m²であり、八幡浜市のK沈着量が最も多く、松山市のK沈着量が最も少なかった。

松山市と新居浜市は春季のK沈着量が最も多かった。八幡浜市は9月のK沈着量が最も多く、冬季の沈着量も多かった。新居浜市における平成5年度のK沈着量は、平年値の約1.9倍であった。この年は、松山市及び八幡浜市におけるK沈着量が平年値を上回っており、調査期間における降水量が最も多い年であったことから、
降水がK沈着量に寄与したものと推察された。八幡浜市の平成3年度及び4年度におけるK沈着量は、平年値の2倍以上であった。

12. ナトリウムイオン

水溶性 Na⁺の沈着量と濁度上検出物の測定結果から得られた不溶性 Na沈着量を合計して、経年変化及び年変化をとりまとめた結果を図29及び図30に示す。水溶性成分及び不溶性成分を合算した年間沈着量の調査期間における平均値は、松山市では30.6mmol/m²、新居浜市では30.4mmol/m²、八幡浜市では84.9mmol/m²であり、八幡浜市におけるNa沈着量は他の地点の約2.8倍であった。

Na沈着量は、各地点とも冬に最も多く傾向を示した。調査期間における各地点のNa沈着量は、松山市と八幡浜市では平成4年度に最も多く、新居浜市では平成9年度に最多であった。八幡浜市は、平成9年度及び4年度に平年値に対して約1.9倍、約2.3倍高いNa沈着量を示した。また、八幡浜市は、平成9年7月より海から0.2kmほどの新岸跡へ移設しているが、移設前と移設後のNa沈着量を比較しても、平成3年度及び4年度を除き、特に大きな差はみられなかった。

13. 鉄、アルミニウム及びマンガン

流路採集装置で採取した濁度上検出物による不溶性Fe、Al、Mnの沈着量、経年変化及び年変化をとりまとめた結果を図31及び図32に示す。不溶性Fe年間沈着量の調査期間における平均値は、松山市では4.6mmol/m²、新居浜市では4.3mmol/m²、八幡浜市では
図 32 Fe, Al, Mn 沈着量の経年変化

3.0mmol/m²であり、不溶性 Al 年間沈着量の平均値は、松山市では 5.9mmol/m²、新居浜市では 5.7mmol/m²、八幡浜市では 3.8mmol/m²であった。八幡浜市における不溶性 Fe 沈着量及び不溶性 Al 沈着量は、他の地点の約 3 割であった。不溶性 Mn 年間沈着量の平均値は、松山市が 0.054mmol/m²、新居浜市が 0.064mmol/m²、八幡浜市が 0.042mmol/m²であり、Fe や Al に比べ大幅低かった。八幡浜市における不溶性 Mn 沈着量は新居浜市約 3 割であり、松山市における不溶性 Mn 沈着量は八幡浜市に次いで少なかった。

不溶性 Fe, Al, Mn の沈着量は、3 地点とも 2月から 5月にかけて多かった。松山市における不溶性 Fe, Al, Mn の沈着量は平成 2年度が最も多く、Fe と Al の沈着量は、年間値の約 3 倍、約 2.9 倍であった。新居浜市では、Fe と Mn の沈着量は平成 4年度が最も多く、Al の沈着量は平成 12年度が最も多かった。八幡浜市における Fe, Al, Mn の沈着量は平成 3年度が最も多かった。Fe, Al は土壤由来、大気浮遊粒子状物質濃度が春季に増加することへの黄砂の寄与との報告が報告されている。そこで、図 33 に松山地方気象台が観測した平成 2年度から 13年度における黄砂の月間延べ観測日数を示す。4月をピークとして、1月から 5月にかけて

図 33 平成 2年度から 13年度における
黄砂観測日数の経年変化

黄砂が観測されており、本調査における Ca, Fe, Al 及び Mn の沈着量が春季に高いことへの黄砂の寄与が推察された。

まとめ

松山市、新居浜市及び八幡浜市の 3 地点において実施している酸性雨調査結果について、平成 2年度（松山市以外の地点は 3年度）から 13年度における浸水主要成分の推移等について解析した結果、次のことが明らかとなった。

1. 週単位で採取した降水の pH は、松山市が 3.8〜6.8、新居浜市が 3.5〜7.1、八幡浜市が 3.8〜6.9 の範囲にあり、調査期間における pH の加算平均値は、松山市と新居浜市が 4.6、八幡浜市は 4.8 であった。
2. 松山市と新居浜市における降水中 H⁺濃度の年平均値は、調査期間において減少傾向を示していた。
3. 新居浜市は、平成 12年度に SO₂⁻、nss-SO₄²⁻、NO₃⁻、NH₄⁺及び nss-Ca⁺⁺での濃度が偏在している値を示した。八幡浜市では、平成 3年度及び4年度に SO₂⁻、nss-SO₄²⁻、Cl⁻及び NH₄⁺での濃度及び偏在、並びに Mg⁺⁺、K⁺及び Na⁺の沈着量が高い値を示しており、松山市は NO₃⁻の濃度及び偏在量についても高い値を示していた。
4. nss-SO₂⁻に対する NO₃⁻の偏在については、濃度比、沈着量比と全ての地点で增加傾向が認められ、中でも新居浜市の増加傾向が最も高いことが明らかとなった。
5. NH₄⁺濃度及び NH₄⁺沈着量は、3地点とも平成7年度以降増加傾向を示していた。
6. nss-Ca⁺⁺沈着量、Ca 沈着量、Fe 沈着量、Al 沈着量及び Mn 沈着量は、春季に増加する傾向を示した。

その原因の一として、松山地方気象台による黄砂観測日数の経年変化から、黄砂の寄与が推察された。

謝辞

本調査を進めるにあたり試料採取等に協力いただいた八幡浜中央保健所、並びに気象資料を提供いただいた松山地方気象台の関係各位に感謝の意を表します。
文 献
1）環境庁大気保全局：酸性雨調査マニュアル（改訂版）（1990）
2）酸性雨調査法研究会編（環境庁大気保全局大気規制課監修）：酸性雨調査法，賛ぎょうせい，267,268（1993）
3）気象庁編：海洋観測指針（第１部），（財）気象業務支援センター，31（1999）
4）全国公害研協議会酸性雨調査研究部会編：全国公害研会誌，20（2），2－55（1995）
5）全国環境研協議会酸性雨調査研究部会編：全国環境研会誌，27（2），2－60（2002）
6）藤田慎一：大気環境学会誌，37，1－22（2002）
7）市川陽一：大気環境学会誌，33，A9－A18（1998）
8）愛媛県県民環境部環境局環境政策課：愛媛県環境白書，各年版
9）京谷智裕ほか：大気環境学会誌，35，287－300（2000）
10）前田泉ほか：岡山県環境保健センター年報，26，1－7（2002）
11）松山地方気象台調べ